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For large-signal operation of oscillators, it is typically necessary to obtain the large-signal 

device parameters of the active two-port network and calculate the external feedback 

elements for the circuit [1]-[13]. Figure 1 shows the simplified circuit diagram for a 

series feedback oscillator comprised of the intrinsic transistor, its package parasitics, and 

the external feedback circuit. As illustrated in Figure 1, the semiconductor depletion layer 

capacitances (Cgs Cgd, and Cds), and the transconductance  are large-signal 

parameters, which are a function of voltage, current, and frequency. The large-signal 

characteristics of the transistor (a MESFET, not a MOSFET) in an oscillator can be 

described with the non-linear Materka model [2]-[6].  When using this model, the 

feedback element values are initially unknown.  In addition, there is no unified approach 

for finding efficient experimental solutions for these feedback element values; a small-

signal approach [7] can be utilized, but it is unable to optimize power and noise 

performance simultaneously. 

 
Figure 1   Series feedback topology for a MESFET oscillator. 

 

Series Feedback (MESFET): 

 

A simplified way to design series or parallel feedback oscillators with external elements 

is to use an analytical approach that determines the explicit expression for the optimum 

feedback elements and the load impedance in terms of the transistor equivalent circuit 

parameters. These equations also provide a better understanding of the fundamental 

limitations to obtaining high output power for a given topology of the microwave 

oscillator [9]-[12]. 
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Figure 1 shows the series feedback topology of an oscillator using a MESFET. External 

feedback elements Z1, Z2, and Z3 are shown outside the dotted line. 

 

The optimum values of the feedback element Z1, Z2, and Z3 may be given as 
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The general approach for designing an oscillator corresponding to the maximum output 

power at a given frequency is based on the optimum values of the feedback elements and 

the load under steady-state large-signal operation. The steady-state oscillation condition, 

for a series feedback configuration, can be expressed as 
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I0 is amplitude of the load current and w0 is the oscillator frequency.  Assuming that the 

steady state current entering the active circuit is near sinusoidal, for a medium to high Q 

case, the output impedance ),( 00 ωIZout  and the load impedance )( 0ωLZ can be expressed 

in terms of their real and imaginary parts as 
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),( 00 ωIZout is a function of current amplitude and the oscillator frequency, and )(wZL is a 

function of frequency. 

 

The common source Z parameters of the MESFET are given as 
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The expression of the output impedance outZ can be written as 
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where Zij (i,j=1,2) is the  Z-parameter of the transistor model and can be expressed as 
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To meet the criterion for maximum output power at a given oscillator frequency, the 

negative real part of the output impedance outZ  has to be maximized.  The optimal 

values of the feedback reactance under which the negative value of outR is maximized, is 

given by the following condition as [2]: 
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The values of 1X  and 2X , which will satisfy the differential equations above are given 

as *
1X and *

2X . These can be expressed in terms of a two-port parameter of the active 

MESFET device  as: 
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where τ is the transit time in the MESFET-channel and  gsgsg RC=τ  and dsdsd RC=τ . 
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From (25), the output impedance ),(),(),( ωωω IXIRIZ outoutout +=  and the corresponding 

optimum output impedance for the given oscillator operating frequency can be derived 

analytically by substituting the optimum values of susceptance using (29)-(32), under 

which the negative value of 
outR is given by 
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*

1X and *

2X , in the equations above, are the optimal values of the external feedback 

susceptance.   

 

For easier analysis, the effects of the transit time and gate-drain capacitance are neglected 

in the preliminary calculation of an optimum value of the feedback element and the 

simplified expressions are given as   
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The simplified expressions above show agreement with harmonic-balance-based 

simulated results for a gate length less than 1 µm, at an operating frequency range up to 

20 GHz [14]-[16]. 

 

The differential drain resistance, Rds, can be expressed in terms of the optimum output 

resistance as 
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Alternatively, a differential drain resistance can be obtained from a quasi-linear analysis. 

Under large-signal operation, the transistor parameters vary with the drive level.  If we 

restrict our interest to the fundamental signal frequency component, then gsV and dsV can 

be expressed as 
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gsoV  and dsoV are the DC operating bias voltages, gsV and dsV are the amplitudes of the 

signal frequency components, and ϕ is the phase difference between the gate and drain 

voltages. 

 

The drain current dI can be expressed as  
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Under the assumption of linear superposition of the DC and RF currents, an instantaneous 

drain current can be expressed as  
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where dsoI  is the DC bias drain current. 

 

The transconductance, gm, and the drain conductance are defined as 
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Under large-signal conditions, the transconductance and the drain conductance are given 

as 
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The drain current can be expressed in terms of gsV , pV  and dsV  as 
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dssI  is the saturation current and pV is the gate pinch-off voltage; α , γ  and 0pV are the 

model parameters of the MESFET. 

 

By applying a Taylor-series expansion to the equation near the DC operating point and 

also considering the fundamental frequency component terms, the large-signal drain 

resistance, as a function of the small-signal drain voltage amplitude, can be given as 
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where DSR  and dsR  are the large and signal differential resistances.  

 

A is defined as 

 

























−

−
−

=
20

0

02

][4

1][tanh3

α

α

pg

pg

d

VV

VV

V

A      (55) 

 
































 −

−

−
=

α

α
pg

p

g

dss

pg

d

ds

VV

V

V
I

VV

V

R
0

20

0

02

]1[

][cosh

    (56) 

 

From the expression above, 
lDSR

signaLarge −
 has a maximum value in the absence of the RF 

drive signal and gets smaller as the amplitude of the RF signal increases.  Consequently, 

the oscillator output impedance and the oscillator output power are a function of the 

change of the drain resistance under large-signal operation.  To support the steady-state 

operation mode, the amplitude and the phase balance conditions can be written as 
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The output power of the oscillator can be expressed in terms of load current and load 

impedance as 
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Parallel Feedback (MESFET): 

 

Figure 2 shows the parallel feedback topology of the oscillator using a MESFET, in 

which the external feedback elements Y1, Y2, and Y3 are shown outside the dotted line. 

 

 
Figure 2 Parallel feedback topology for a MESFET oscillator. 

 

 

The optimum values of the feedback elements Y1, Y2 and Y3 are given as 
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The common source Y parameters of the MESFET are given as 
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The optimum values of the output admittance *

outY  and the feedback susceptance *

1B and 
*

2B , which can be expressed in terms of the two-port Y parameters of the active device are 

given as 
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The optimum values of the real and imaginary parts of the output admittance are  
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The value of the output susceptance *

outB  may be positive or negative, depending on the 

values of the transistor’s transconductance and τgs = RgsCgs. 

 

The voltage feedback factor n and phase φn can be expressed in terms of the transistor Y 

parameters as 
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The output power of the oscillator can be expressed in terms of the load current and the 

load impedance as 
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where Iout  and Vout are the corresponding load current and drain voltage across the output. 
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Series Feedback (Bipolar): 

 

Figure 3 shows the series feedback oscillator topology for deriving explicit analytical 

expressions for the optimum values of the external feedback elements and the load 

impedance for maximum power output at a given oscillator frequency through the Z 

parameters of a bipolar transistor. The modified physics-based Gummel-Poon model [8, 

9], describes the physical behavior of the bipolar transistor. 

 

 
Figure 3 Series feedback topology of the oscillator using a bipolar transistor. 
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Figure 3 shows the series feedback topology of the oscillator using a bipolar transistor, in 

which external feedback elements Z1, Z2 and Z3 are shown outside the dotted line. 

 

The optimum values of the feedback elements Z1, Z2 and Z3 are given as 
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The Z parameters of the internal bipolar transistor in a common-emitter, small-signal 

condition are given as [2, 10, 11] 
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where 
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The criterion for obtaining the maximum power output at a given oscillator frequency 

requires that, the negative real part of the output impedance outZ  be maximized. The 

possible optimal values of the feedback reactance, under which the negative value of 

outR is maximized, are given by the following conditions as [10] 
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The values of 1X  and 2X , which will satisfy the differential equations above, are given 

as *

1X and *

2X . These can be expressed in terms of two-port parameters of the active 

bipolar device as [10] 
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By substituting the values of *

1X and *

2X  into the equation above, the optimal real and 

imaginary parts of the output impedance *

outZ  can be expressed as 
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thus, in the steady-state operation mode of the oscillator, the amplitude and phase balance 

conditions can be written as 

 

0* =+ Lout RR       (111) 

 

0** =+ Lout XX       (112) 

 

The output power of the oscillator can be expressed in terms of load current and load 

impedance as 
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1 2
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Iout and Vout are the corresponding load current and collector-voltage across the output. 
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V1 is the signal voltage and x is the drive level across the base-emitter junction of the 

bipolar transistor.  The large-signal transconductance )(xGm is given as  
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where mg is the small-signal transconductance. 

 
Parallel Feedback (Bipolar): 

 

Figure 4 shows the parallel feedback topology of the oscillator using a bipolar transistor, 

in which the external feedback elements Y1, Y2, and Y3 are shown outside the dotted line. 
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Figure 4    A parallel feedback topology of an oscillator using a bipolar transistor. 

 

The optimum values of the feedback elements Y1, Y2 and Y3 are given as 
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The common source Y parameters of the bipolar transistor are given as 
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The optimum values of the output admittance *

outY  and feedback susceptance *

1B and *
2B , 

which can be expressed in terms of the two-port Y parameters of the active device, are 

given as 
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The optimum values of the real and imaginary parts of the output admittance are  
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The output power of the oscillator can be expressed in terms of the load current and the 

load impedance as 

]Re[
2

1 2

Loutout ZIP =      (136) 

 

where Iout  and Vout are the corresponding load current and drain voltage across the output. 
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A FET Example 
 

Figure 5 shows a 950 MHz MESFET oscillator circuit configuration [1] and the 

analytical approach for optimum operating conditions for maximum oscillator output 

power.  The analysis is based on the quasi-linear approach described above and is 

experimentally supported with the conversion efficiency of 54%, which is the maximum 

conversion efficiency published for this topology.  However, the publication does not 
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place any emphasis on the optimum phase noise, which is a key parameter for oscillator 

design. 

 

Power optimization of a GaAs-950 MHz-MESFET oscillator [1]: 

 

 
Figure 5   A 950 MHz MESFET oscillator circuit configuration. 

 

The derivations of the analytical expressions are based on the open loop model of the 

oscillator.  Figure 6 shows an equivalent circuit of the oscillator. 

 

 
 

 
Figure 6   An equivalent circuit of the open loop model of a MESFET oscillator. 
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Z1 can be expressed as 
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Multiplying the numerator and the denominator by the conjugate yields 
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The following assumptions are made for simplification purposes. 
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The modified Z1 can then be represented as 
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defining the three new variables as 
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Figure 7 shows a simplified open loop model of the oscillator for easy analysis.  In this 

open loop model, the parasitic elements of the device are absorbed into the corresponding 

embedding impedances. 

 
Figure 7  A simplified open loop model of the oscillator. 
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The circuit model of the oscillator is shown in Figure 8, in which the output current 

through ZL is given as 
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Figure 8  A circuit model of the oscillator. 

The voltage across Zi is given as: 
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By applying the voltage divider in Figure 8, Vgs can be expressed as 
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Steady-state oscillation occurs when Ids(t)=II and Vgs=Vp.  Consequently, the equation 

above can be written as  
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As shown in Figure 8, the Icb (current through Cb) can be given by  
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Based on the last result we can conclude that 
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Also, Re[ZL] can be defined as follows 
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The power delivered to the load ZL and the magnitude of Vds can be determined by 
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Based on the equations above, the output power can be estimated as 
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Below 5 GHz, it is valid to ignore some of the terms by assuming that 
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The output power is now expressed as 
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In a similar manner, Vds is given by 

 











 −+−
=

22

222

2

1

2
]1[]1[

b

afaf

ds
C

RCXC
IV

ω
ωωα

    (188) 

 

Both the output power and Vds depend on Cb if the other parameters are fixed. 

 

This is the limit for the maximum value.  However, a maximum value of the current and 

the voltage a transistor can take before burn-out should be found.  Therefore, by setting 

Vds= Vdsm,  an optimal condition can be given by [1]: 
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The optimum load impedance that the device needs to deliver the highest power is 

defined as  
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leading to the following definition 
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Using the result above, the optimum Pout is, therefore, given by 
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The first term is the power available from the current source and the second term is the 

power absorbed by Ra.  This also indicates that a high Q inductor minimizes the absorbed 

power, thus increasing the power available from the current source.  Pout simplifies 

further at the oscillation frequency since Xa≈0. 
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The above analytical analysis gives the following important results: 

 

1) Maximum output power is attained if we set 
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Accordingly, the DC/RF conversion efficiency is calculated by 
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In order to maximize the oscillator output power and efficiency, the loss resistance Ra of 

the input circuit has to be reduced (increasing G), and an optimal biasing condition VDS 

has to be selected. 
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3)  Combining the above equations leads to expressions for ZL in terms of  
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From these analytical calculations, the following results were achieved. The circuit 

simulation of the oscillator was done using a nonlinear Materka model.   

 
 

Figure 9   Schematic diagram of the oscillator operating at 950 MHz as published in [1]. 

 

Figure 9 shows the schematic diagram of a practical oscillator operating at 950 MHz. A 

simple high-pass filter consisting of LT and CT was used to transfer the Z0/50 Ω load to 

the required ZL value. 

 

From the above expression, all of the effective components of the oscillator can be given 

as: 

 

1.   Bias condition: 

 

VVDS 5=  
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2.    Device Parameters: 
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3.   Device Parasitic: 
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pFCds 2.0=  

 

pFCgd 0089.0=  

 

4.   Oscillator Parameters: 
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5. Output matching circuit: 
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nHLT 9.8=  

 

nHLnHL dT 7.89.8' =−=  

 

pFCT 91.1=  

 

6.  Calculation of Ropt: 
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7.  Calculation of ZL: 
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8. Output power: 
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9. DC-RF conversion efficiency: 
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Simulated Results 

 

Figures 10, 11, 12, 13, 14, and 15 show the oscillator test circuit and its simulated results.  

After the oscillator circuit is analyzed in the harmonic-balance program, the oscillator 

frequency is found to be 1.08 GHz. Some tuning is required to bring the oscillator 

frequency back to the required value by changing Ls from 3.9nH to 4.45nH.  The slight 

shift in the oscillator frequency may be due to the device parasitics. The simulated power 

output is 17.04 dBm, which is about the same as the measured value by [1].  The DC/RF 

conversion efficiency at the fundamental frequency is 55%.  The calculation in [1], as 

well as the calculation here, assumes an ideal transistor.  By finding a better value 

between C1 and C2, the efficiency was increased to 64%, compared to the published result 

of 55%.  This means that the circuit in [1] has not been fully optimized. 

 

 
Figure 10   Schematic of the test oscillator based on [1]. 
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Figure 11   Load line of the oscillator shown in Figure 10.  Because the load is a tuned circuit, the “load 
line” is a curve and not a straight line. 
 
 

 

 
 

Figure 12   Plot of drain current and drain source voltage as a function of time. 
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Figure 13   AC drain current simulated for Figure 10. 

 
 

 
 

Figure 14   Simulated and validated noise figure of the circuit shown in Figure 10.  An increase of the 
feedback capacitor from 15 to 22pF improves the phase noise. 
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Figure 15   Simulated output power of the oscillator shown in Figure 10. 
 
 

By taking the published experimental results [1] into consideration, the analytical 

expression gives excellent insight into the performance of the oscillator circuit. 

 

The maximum achievable output power and efficiency for a given active device can be 

predicted through closed-form expressions without the need of large-signal device 

characterization and an harmonic-balance simulation. The publication [1] has not 

addressed the power optimization and lowest phase noise, which are very important 

requirements for the oscillator.   

 

By proper selection of the feedback ratio at the optimum drive level, the noise is 

improved by 8dB, keeping the output power approximately the same. 

 

In [2] we discuss fixing the optimum feedback ratio and the absolute values of the 

feedback capacitor, with consideration for the lowest possible phase noise. 
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